Abstract

Cold dwell sensitivity of near α titanium alloys has posed a significant challenge to the engineering safety within the aerospace industry. However, there exists inconsistency regarding the critical facet formation mechanism between basal and prismatic nucleation. A key revelation in this paper is that the controversy surrounding the facet nucleation plane primarily arises from variations in texture: when the loading direction is parallel to the c-axis or at a 45 ° angle, it leads to basal plane cracking, whereas loading direction perpendicular to the c-axis results in prismatic plane cracking. What's more, a large anisotropy is observed in the dwell fatigue performance in descending order: rolling direction (RD) > transverse direction (TD) >45° direction. To be specific, the dwell fatigue life of RD specimens was 2 times and 4.07 times longer than that of TD and 45 ° specimens, which exhibits excellent dwell fatigue resistance. Furthermore, the high prismatic dislocation density near the facet of RD specimen was confirmed through the Transmission Electron Microscope (TEM) and Transmission Kikuchi Diffraction (TKD) map, which is evidenced that prismatic slips lead to higher strain hardening during cyclic loading. The basal plane of facet grain is generally parallel to the facet line, indicating that the elliptical facet developed by the transgranular fracture through basal plane. Twinning activation in hard grain to accommodate deformation in Ti60 alloy is firstly observed under dwell fatigue tests, which is a product of high stress level in the hard grain. This paper unveils the significant impact of texture on dwell fatigue resistance, offering novel insights into enhancing dwell fatigue performance through texture control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.