Matrix-valued holomorphic quantum modular forms are intricate objects associated to 3-manifolds (in particular to knot complements) that arise in successive refinements of the volume conjecture of knots and involve three holomorphic, asymptotic and arithmetic realizations. It is expected that the algebraic properties of these objects can be deduced from the algebraic properties of descendant state integrals, and we illustrate this for the case of the (-2,3,7)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(-2,3,7)$$\\end{document}-pretzel knot.