Abstract
There are infinitely many pretzel links with the same Alexander polynomial (actually with trivial Alexander polynomial). By contrast, in this note we revisit the Jones polynomial of pretzel links and prove that, given a natural number S, there is only a finite number of pretzel links whose Jones polynomials have span S.More concretely, we provide an algorithm useful for deciding whether or not a given knot is pretzel. As an application we identify all the pretzel knots up to nine crossings, proving in particular that 812 is the first non-pretzel knot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.