Abstract

A pair of surgeries on a knot is chirally cosmetic if they result in homeomorphic manifolds with opposite orientations. Using recent methods of Ichihara, Ito, and Saito, we show that, except for the (2, 5) and (2, 7)-torus knots, the genus 2 and 3 alternating odd pretzel knots do not admit any chirally cosmetic surgeries. Further, we show that for a fixed genus, at most finitely many alternating odd pretzel knots admit chirally cosmetic surgeries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.