AbstractFlexible sensors are increasingly recognized for their transformative potential in wearable electronic devices, medical monitoring, and human‐computer interaction. Despite the advancements, developing a flexible sensor array with a simple structure and large area preparation for effective signal sensing and monitoring capabilities remains challenging. In this study, a hierarchical rGO‐based flexible triboelectric sensor (HG‐FTS) is scalably prepared by a simple blade‐coating approach, in which the nitrogen‐doped reduced graphene oxide (rGO) sheet is hierarchically deposited in a polydimethylsiloxane (PDMS) layer. The flexible triboelectric sensor performed in single electrode mode not only demonstrates exceptional reliability and consistency but also achieves a maximum voltage of ≈129 V and a power density of ≈0.5 W m−2. These characteristics enable the real‐time monitoring of human physiological signals and joint motion with high fidelity. Furthermore, an intelligent human‐computer interactive control system is developed using the HG‐FTS, featuring a digital array touch screen with a rectangular pattern. The build system can be successfully used for pressure sensing, object shape recognition, and trajectory tracking. This work provides a viable solution to the large area preparation and high‐performance flexible sensor manufacturing and demonstrates the potential application of HG‐FTS in human‐computer interaction, signal monitoring, and intelligent sensing.
Read full abstract