Nowadays, trivalent rare-earth ions activated inorganic luminescent materials have been widely investigated owing to their important applications in solid-state lighting field. Tm3+ and Dy3+ ions single- or co-doped Ba3La6(SiO4)6 (BLSO) phosphor materials for white light application were synthesized by a citrate-based sol-gel method. The prepared samples were examined by X-ray diffraction (XRD), scanning electron microscopy and Fourier-transform infrared spectroscopy to analyze the phase purity, surface morphology and existence of functional groups, respectively. The XRD pattern confirmed that the BLSO host lattice exhibited a hexagonal crystal structure with P63/m (176) space group, which is well indexed with standard JCPDS data. From photoluminescence results, the BLSO:Tm3+ phosphors exhibited purplish blue emission at 453 nm (1D2→3F4) and the BLSO:Dy3+ phosphors showed predominant yellow emission at 575 nm (4F9/2 → 6H13/2) compared to their shoulder blue emission at 479 nm (4F9/2 → 6H15/2), indicating that the Dy3+ ions occupied lattice sites with low inversion symmetry. The determined Commission Internationale de I’Eclairage (CIE) (0.3391, 0.3302) values for the Tm3+/Dy3+ co-doped BLSO phosphors were near to the standard sun light CIE values (0.33, 0.33) under near-ultraviolet (364 nm) excitation. The energy transfer process from Dy3+ to Tm3+ ions was discussed and it was proved by their corresponding decay curves. Additionally, thermal study was carried out for the optimized phosphor and it maintained superior thermal PL properties.
Read full abstract