High-Power Impulse Magnetron Sputtering (HiPIMS) has emerged as an excellent technology for producing high-quality nitride coatings, such as aluminum nitride (AlN), titanium nitride (TiN), chromium nitride (CrN), and silicon nitride (SiN), and composite nitride coatings such as titanium aluminum nitride (TiAlN), TiAlNiCN, etc. These coatings are known for their exceptional hardness, thermal stability, and corrosion resistance. These make them ideal for high-performance applications. HiPIMS distinguishes itself by generating highly ionized plasmas that facilitate intense ion bombardment, leading to nitride films with superior mechanical strength, durability, and enhanced thermal properties compared to traditional deposition techniques. Critical HiPIMS parameters, including pulse duration, substrate bias, and ion energy, are analyzed for their influence on enhancing coating density, adhesion, and hardness. The review contrasts HiPIMS with other deposition methods, highlighting its unique ability to create dense, uniform coatings with improved microstructures. While HiPIMS offers substantial benefits, it also poses challenges in scalability and process control. This review addresses these challenges and discusses hybrid, bipolar, and synchronized HiPIMS solutions designed to optimize nitride coating processes. Hybrid HiPIMS, for instance, combines HiPIMS with other sputtering techniques like DCMS or RF sputtering to achieve balanced deposition rates and high-quality film properties. Bipolar HiPIMS enhances process stability and film uniformity by alternating the polarity, which helps mitigate charge accumulation issues. Synchronized HiPIMS controls precise pulse timing to maximize ion energy impact and improve substrate interaction, further enhancing the structural properties of the coatings. Hence, to pave the way for future research and development in this area, insights of the HiPIMS have been presented that underline the role of HiPIMS in meeting the demanding requirements of advanced industrial applications. Overall, this review article comprehensively analyzes the recent strategies and technological innovations in HiPIMS and highlights the significant potential of HiPIMS for advancing the nitride coating field.
Read full abstract