Multi-terminal hybrid high-voltage direct current (HVDC) systems have been developed quickly in recent years in power transmission area. However, for voltage-source converter (VSC) stations in hybrid HVDC systems, no direct current (DC) filters are required. In addition, the DC reactor is also not installed at the line end because the DC fault can be limited by the converter itself. This means that the boundary element at the line end is absent, and the single-ended protections used in line commutated converter (LCC) based HVDC (LCC-HVDC) systems or VSC-HVDC systems cannot distinguish the fault line in multi-terminal hybrid HVDC systems. This paper proposes a novel single-ended DC protection strategy suitable for the multi-terminal hybrid HVDC system, which mainly applies the transient information and active injection concept to detect and distinguish the fault line. Compared with the single-ended protections used in LCC-HVDC and VSC-HVDC systems, the proposed protection strategy is not dependent on the line boundary element and is thus suitable for the multi-terminal hybrid HVDC system. The corresponding simulation cases based on power systems computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC) are carried out to verify the superiority of the proposed protection.