Ground-penetrating radar (GPR) surveys were performed in the Sarma segment of the Primorsky fault between the settlements of Shida and Kurma. This segment belongs to one of the largest structures of the Baikal rift and was active in Late Quaternary (Early Holocene). The study aimed to reconstruct vertical displacement amplitudes and dip angles of fractures along the fault segment, clarify its kinematic type, and estimate a maximum magnitude of earthquakes that may occur in the study area. The GPR equipment set included an OKO-2 georadar and AB-250M and ABDL-Triton shielded antennas. The GPR surveys were supported by morphostructural and tectonophysical methods. Based on the interpretation of the geophysical survey data and satellite images, faults associated with the Sarma paleoseismic dislocation were mapped. Their total length amounts to 14 km. According to the GPR survey data, one-stage vertical displacements show normal faulting and vary from SW to NE from 4.4 to 7.7 m. Paleo-earthquake magnitudes calculated from the maximum displacement values (Mw=7.2, and Мs=7.4) suggest that potential earthquakes in the Primorsky fault zone may be stronger than previously assumed.
Read full abstract