Trajectory accuracy, a crucial metric in assessing the dynamic performance of grinding robots, is influenced by the uncertain movement of the tool center point, directly impacting the surface quality of processed workpieces. This article introduces an innovative method for compensating trajectory errors. Initially, a strategy for error compensation is derived using differential kinematics theory. Subsequently, a robot kinematic calibration method utilizing ring particle swarm optimization (RPSO) is proposed to address static errors in the grinding robot. Simultaneously, a method for predicting robot joint variables based on a dual-channel feedforward neural network (DCFNN) is designed to mitigate dynamic errors. Finally, a simulation platform is developed to validate the proposed method. Simulation analysis using extensive data demonstrates an 89.3% improvement in absolute position accuracy and a 74.2% reduction in error fluctuation range, outperforming sparrow search algorithm (SSA), improved mayfly algorithm (IMA), multi-representation integrated predictive neural network (MRIPNN), etc. Algorithmic comparison reveals that kinematic calibration significantly reduces the average trajectory error, while joint variable prediction notably minimizes error fluctuation. Validation through trajectory straightness testing and a 3D printing propeller grinding experiment achieves a trajectory straightness of 0.2425 mm. Implementing this method enables achieving 86.1% surface machining allowance within tolerance, making it an optimal solution for grinding robots.
Read full abstract