We develop new single-frequency PPP models, which combine the observations of the current GNSS constellations, including GPS, GLONASS, Galileo and BeiDou. Four single-frequency GNSS PPP models are developed, namely, the undifferenced single-frequency GNSS PPP model, the undifferenced ionosphere-free (IF) code and phase model known as quasi-phase model, the between-satellite-single-difference model (BSSD) and the between-satellite-single-difference ionosphere-free (BSSDIF) model. The IGS final precise products are used to account for the orbital and clock errors. For both undifferenced and BSSD models, the IGS final global ionospheric maps (GIM) model is used to correct the ionospheric delay. The GNSS inter-system biases are treated as additional unknowns in the estimation process for the undifferenced models, while a loosely coupled technique is used for the BSSD models. Various GNSS combinations are considered in the assessment for each PPP model, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and quad-constellation GNSS observations. It is shown that the multi-GNSS observations enhance the PPP solution accuracy in comparison with the GPS-only solution. Furthermore, the use of IF-PPP technique enhances the positioning accuracy by 25, 20, 24, 20 and 19% compared with the GIM-based PPP model for the GPS-only, GPS/GLONASS, GPS/Galileo, GPS/BeiDou and quad-GNSS combinations, respectively, for 1 h of GNSS data processing. In addition, an average of 15% positioning accuracy improvement can be obtained when the BSSD techniques are used compared with the undifferenced techniques. However, for 6 h of processing, comparable positioning accuracy can be obtained from all four single-frequency models.
Read full abstract