The present study demonstrates the potential of a portable capillary electrophoresis (CE) instrument, coupled to deep UV fluorescence detector (FD) with a 230-255 nm excitation wavelength range, for the determination of the abuse of illegal drugs in oral fluids in situ. CE was introduced in this study due its exceptional power of separation and resolution, short analysis time, and ability for miniaturization for on-site assessment of different substances. The deep UV fluorescence detector was equipped with five interchangeable emission filters, in the emission wavelength range from 278 to 600 nm, and was successfully employed for determination of natively fluorescing illegal drugs, such as cocaine, cocaethylene, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxeamphetamine (MDA), 3,4-methylenedioxy- N-ethylamphetamine (MDEA), para-methoxyamphetamine (PMA), para-methoxy- N-methylamphetamine (PMMA), amphetamine (AMP), methamphetamine (METH), tetrahydrocannabinol (THC) and cannabidiol (CBD). The developed FD showed impressive sensitivity. The instrumental detection limit was 0.5 μg/L for MDMA. It also showed broad linearity, up to 50 mg/L for MDMA. The noise CV% was 1.1% for an empty capillary and 0.6% for a capillary filled with acetonitrile. The portable CE-FD with developed electrophoretic methodologies was successfully utilized for the determination of illegal abuse of drugs during "Weekend" 2016 and 2017 Music Festivals (Estonia). Moreover, CE-FD can be employed for detection of other natively fluorescing compounds in the proposed range (e.g., for different phenolic compounds, BTEX, naphthalene derivatives, and others), significantly widening the applicability of developed CE-FD instrument.
Read full abstract