Ras genes were first identified in the 1960s as transforming oncogenes that caused tumors in rats infected with Harvey and Kirsten sarcoma viruses (Ha-ras and Ki-ras oncogenes, accordingly). Subsequently, transforming ras genes were found in human cancer cells. Further investigations of neuroblastoma cells resulted in the finding of the third ras gene in the human, which was called N-ras. Ras gene products play an important role in the processes of cellular proliferation and differentiation and are controlled by receptor tyrosine kinases. Using drosophila as a model object allowed us to perform a successful genetic analysis while studying the functions of ras genes. Three polytene chromosome bands were detected in D. melanogaster with the help of the v-Ha ras sampling. According to Bridges' map, all three bands (Dras1, Dras2, Dras3) were mapped to regions 85D, 64B, and 62B of chromosome 3. Among them, only Drasl has a common origin with ras genes of mammals. Although there are numerous investigations of the role played by ras genes in the de- velopment of insects, this problem is still not fully understood. The importance of ras gene variations in the course of the evolutionary process has been insufficiently studied as well. Currently, Ras target proteins are actively identified, their signal pathways, as well as effects of influencing these pathways in the drosophila tissues, are studied in the cells of yeast and mammals. The main functions of Ras protein is in the signaling pathways controlling mutations during drosophila's morphogenesis and the connections of ras gene with phenotypic symptoms of tumors.
Read full abstract