The effects of different processing methods (direct extrusion, two-step extrusion or lateral injection extrusion) on the morphology of polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM)/calcium carbonate nanoparticles (nano-CaCO3) ternary blend were investigated, including the morphology of the EPDM phase and the distribution of nano-CaCO3 particles, by means of scanning electron microscopy (SEM). The results showed that the processing methods had a significant influence on the morphology of the EPDM phase and the distribution of nano-CaCO3 particles. In the lateral injection extruded blends, it was amazingly observed that the EPDM particles encapsulated the PP phase tightly, and the dimension of EPDM particles was remarkably decreased. It was also found that the content of nano-CaCO3 particles in the matrix of the lateral injection extruded blends was less than that of the two-step extruded blend, and that of the direct extruded blend was most. The properties of the ternary blend, including dynamic mechanical properties, rheological properties, and crystallization, were characterized in order to confirm the variety of morphologies caused by the different processing methods. The differences in the crystallization temperature, elastic modulus, and glass transition temperature of the blends prepared by different methods well agreed with the variation of their morphology.
Read full abstract