AbstractInflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal (GI) tract with an uncertain etiology. Currently, IBD therapy relies on the induction of clinical remission followed by maintenance therapy using anti‐inflammatory drugs and immunosuppressants; however, a definite cure of the disease is still out of scope. Established approaches are characterized by adverse drug‐related side effects that can even be potentially life‐threatening. In contrast, increased interest and remarkable scientific progress in targeted drug delivery systems offer a promising approach to reduce systemic adverse events, delivering the therapeutic substances only to inflamed tissue. All alteration in gastrointestinal barrier integrity, especially a disturbed epithelial barrier, a unique pattern of the receptors on cell surface and/or an oxidative stress milieu in inflamed areas can be used as effective approaches for targeted and controlled drug delivery. Hence, this review focuses on the pathophysiology of the inflamed GI tract as a potential strategy for targeted polymeric nanoparticles for IBD treatment. Interdisciplinary efforts between the polymeric chemistry and gastroenterology/immunology promise to create novel synergies that improve the development of effective nanoparticle systems with significant clinical impact. In this regard, the current challenges in the clinical translation of promising nanomedicine are also discussed.
Read full abstract