Lithium-ion batteries (LIBs) have circumvented the energy storage landscape for decades. However, safety concerns about liquid–electrolyte-based LIBs have challenged their mobilization. Lithium polymer (LiPo) batteries have gained rising interest due to their high thermal stability. Despite an array of commercially available LiPo batteries, limited studies have ventured into modeling. Numerical simulations allow low-cost optimization of existing battery designs through parameter analysis and material configuration, leading to safer and more energy-efficient batteries. This work examined the electrochemical, thermal, and thermal runaway behavior of a lithium cobalt oxide cathode, graphite anode, and poly(vinylidene fluoride-hexafluoropropylene) electrolyte pouch-type LiPo battery using COMSOL Multiphysics®, and validated results with experimental data. The simulated potential curve exhibited strong agreement with experiment data, while the temperature profile during discharge displayed qualitative discrepancies rationalized by the reversible heat generation. Thermal runaway simulations via oven tests revealed that the highest heat generation is from the cathode–electrolyte reaction, while the solid electrolyte interface decomposition initiates the heat generation process. These results suggest a thorough selection of cathode and electrolyte material to heighten battery safety. Overall, the developed models can be utilized as design tools to investigate various chemistries and designs to estimate the behavior and performance of batteries.
Read full abstract