AbstractBacterial infection and impaired angiogenesis make the treatment of diabetic foot ulcers (DFU) extremely challenging. Cationic polymers are expected to treat infected wounds due to their excellent antibacterial properties, but still, it is difficult to meet the therapeutic needs of pro‐angiogenesis and anti‐infections due to their simple construction units and outmoded synthesis methods. Herein, a cationic poly(pentahydropyrimidine) (PPHP) library with strong modifiability is synthesized to construct a hybrid hydrogel with synergistic therapeutic effects for the treatment of infected DFUs. It is found that the as‐synthesized hybrid hydrogel can up‐regulate angiogenesis‐related gene (HIF‐1, VEGF, and bFGFR/bFGF) expression and targeted disruption of bacterial cell membranes, which finally promotes the healing of infected DFU (wound healing rate: 92%) within 10 days. This hydrogel, thus, holds great promise in developing new strategies to significantly enhance the treatment of DFU and other bacterial‐infected pathological diagnoses.
Read full abstract