In this study we estimate relative pollen productivity (RPP) for plant taxa characteristic of human-induced vegetation in ancient cultural landscapes of the low mountain ranges of Shandong province in eastern temperate China. RPP estimates are required to achieve pollen-based reconstructions of Holocene plant cover using modelling approaches based on Prentice’s and Sugita’s theoretical background and models (REVEALS and LOVE). Pollen counts in moss samples and vegetation data from 36 sites were used in the Extended R-Value (ERV) model to estimate the relevant source area of pollen (RSAP) of moss polsters and RPP of major plant taxa. The best results were obtained with the ERV sub-model 3 and Prentice’s taxon-specific method (using a Gaussian Plume dispersal model) to distance weight vegetation data. RSAP was estimated to 145 m using the maximum likelihood method. RPP was obtained for 18 taxa of which two taxa had unreliable RPP (Amaranthaceae/Chenopodiaceae and Vitex negundo). RPPs for Castanea, Cupressaceae, Robinia/Sophora, Aster/Anthemis-type, Cannabis/Humulus, Caryophyllaceae, Brassicaceae and Galium-type are the first ones for China. Trees, except Robinia/Sophora (RPP = 0.78 ± 0.03) have larger RPPs than herbs other than Artemisia (RPP = 24.7 ± 0.36). The RPPs for Quercus, Pinus and Artemisia are comparable with other RPPs obtained in China, the RPPs for Pinus, Quercus, Ulmus, Cyperaceae and Galium-type with the mean RPPs obtained in Europe, and RPP for Cupressaceae with that for Juniperus in Europe. The values for Aster/Anthemis-type, Caryophyllaceae, Asteraceae SF Cichorioideae and Juglans differ from the few RPPs available in China and/or Europe.