Although gamma-irradiation to platelet products is a standard method to prevent the risk of TA-GVHD in vulnerable recipients, it induces some proteomic and redox changes, of which irradiation-induced ROS increments may potentiate platelet mitochondrial dysfunction. However, whether these changes cause platelet apoptosis, or affect their viability during storage, is the main subject of this study. PLT-rich plasma PC was split into two bags, one kept as control while other was subjected to gamma-irradiation. Within 7-days storage, cytosolic and mitochondrial levels of cytochrome c and pro-apoptotic molecules of Bak and Bax were evaluated by western-blotting. Intraplatelet active caspase (using FAM-DEVD-FMK) and PS-exposure were detected by flowcytometry. Caspase activity in platelet lysate was also confirmed by immunofluorescence detection of Caspase-3/7 Substrate N-Ac-DEVD-N'-MC-R110 while platelet viability was evaluated with MTT assays. Cytosolic cytochrome c gradually increased while its mitochondrial content steadily declined during 7 days of storage. In a contrary trend, reverse patterns were observed for Bak and Bax expressions. Gamma-irradiated platelets showed higher release of mitochondrial cytochrome c that reflected by higher cytosolic cytochrome c levels on day 7 of storage. Concurrently mitochondrial pro-apoptotic Bak and Bax proteins increased on day 7 in irradiated products. However, gamma-irradiation didn't significantly increase caspase activity or PS-exposure, nor did it decrease platelet viability. Here, consistent with studies on "gamma-irradiation-induced oxidative stress", we showed that gamma-ray also increases platelet pro-apoptotic signals during storage, although not strongly enough to affect platelet viability by overt apoptosis induction. Conclusively, whether supplementing ROS scavengers or antioxidants to irradiated platelets can improve their quality during storage may be of interest for future research.
Read full abstract