Laser plasma generated by ablation of an Al target in vacuum is characterized by ion time-of-flight combined with optical emission spectroscopy. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ ∼ 7 ns, and fluence F ≤ 38 J/cm2) is used to ablate the Al target. Ion yield and energy distribution of each charge state are measured. Ions are accelerated according to their charge state by the double-layer potential developed at the plasma-vacuum interface. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. Optical emission spectroscopy of the Al plasma gives significantly lower plasma temperature than the ion temperature obtained from the ion time-of-flight, due to the difference in the temporal and spatial regions of the plasma plume probed by the two methods. Applying an external electric field in the plasma expansion region in a direction parallel to the plume expansion increases the line emission intensity. However, the plasma temperature and density, as measured by optical emission spectroscopy, remain unchanged.
Read full abstract