Abstract
Laser plasma generated by ablation of an Al target in vacuum is characterized by ion time-of-flight combined with optical emission spectroscopy. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ ∼ 7 ns, and fluence F ≤ 38 J/cm2) is used to ablate the Al target. Ion yield and energy distribution of each charge state are measured. Ions are accelerated according to their charge state by the double-layer potential developed at the plasma-vacuum interface. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. Optical emission spectroscopy of the Al plasma gives significantly lower plasma temperature than the ion temperature obtained from the ion time-of-flight, due to the difference in the temporal and spatial regions of the plasma plume probed by the two methods. Applying an external electric field in the plasma expansion region in a direction parallel to the plume expansion increases the line emission intensity. However, the plasma temperature and density, as measured by optical emission spectroscopy, remain unchanged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.