Titanium (Ti) is an established biomaterial for bone replacement. However, facilitation of osteoblast attachment by surface modification with chemical groups could improve the implant performance. Therefore, this study aimed to evaluate the effect of a plasma polymerized allylamine (PPAAm) layer on the local inflammation in a rat model. Three series (RM76AB, RM78AB, RM77AB) of PPAAm-treated Ti plates were prepared using different plasma conditions. Twelve male LEW.1A rats received one plate of each series and one uncoated control plate implanted into the back musculature. After 7, 14 and 56 days, four rats were euthanized to remove the implants with surrounding tissue. Total monocytes/macrophages, tissue macrophages, T-cells and MHC-class-II-positive cells were morphometrically counted. On day 14, the macrophage/monocyte number was significantly higher for the controls than for the PPAAm samples. On day 56, the RM76AB and RM78AB samples had significantly lower numbers than RM77AB and the controls. The same was found for the tissue macrophages. No change over time and no differences between the implants were found for the T-cells. For the number of MHC-class-II-positive cells, a significant decrease was found only for the RM78AB implants between day 14 and day 56. Physico-chemical analysis of the PPAAm implants revealed that the RM77AB implants had the lowest water absorption, the highest nitrogen loss and the lowest oxygen uptake after sonication. These results demonstrate that the PPAAm samples and the controls were comparable regarding local inflammation, and that different plasma conditions lead to variations in the material properties which influence the tissue reaction.
Read full abstract