Abstract

AbstractSeveral studies suggest that the modification of an implant surface by chemical means plays an important role in bone tissue engineering. Previously we have shown that osteoblast cell adhesion and spreading can strongly be increased by a positively charged surface. Cell adhesion and migration are two vital processes that are completely dependent on coordinated formation of focal adhesions. Changes in the organization of the actin cytoskeleton and the focal adhesions are essential for numerous cellular processes including cell motility and tissue morphogenesis. We examined the mobility of the cytoskeletally associated protein vinculin on functionalized surfaces using plasma polymerized allylamine (PPAAm), a homogenous plasma polymer layer with randomly distributed amino groups. In living, GFP–vinculin transfected osteoblastic cells we determined a significant increase in vinculin mobility and vinculin contact length on PPAAm compared to collagen I coated surfaces during the initial adhesion phase. We suggest that positive charges control the cell physiology which seems to be dominant over the integrin receptor binding to collagen I. The results emphasize the role of the surface charge for the design of artificial scaffolds in bone repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.