We report an experimental project to incorporate double-barrier tunnel structures into three-terminal devices. These devices have the negative-differential-resistance (NDR) features of the double barrier, and the added flexibility of a third controlling electrode. One way to make such a device involves the series combination of a double-barrier tunnel structure with a field-effect transistor. We have realized this concept in two types of devices, using samples grown by metalorganic chemical vapor deposition. The devices consist of a GaAsAlxGa1−xAs double-barrier tunneling heterostructure, the current through which is controlled by either an integrated vertical field-effect transistor or a planar metal-semiconductor field effect transistor. The voltage location and peak-to-valley current ratio of the NDR present in the source-drain circuit can be modulated with gate voltage. Experimental results for four samples are presented.
Read full abstract