Abstract
We report an experimental project to incorporate double-barrier tunnel structures into three-terminal devices. These devices have the negative-differential-resistance (NDR) features of the double barrier, and the added flexibility of a third controlling electrode. One way to make such a device involves the series combination of a double-barrier tunnel structure with a field-effect transistor. We have realized this concept in two types of devices, using samples grown by metalorganic chemical vapor deposition. The devices consist of a GaAsAlxGa1−xAs double-barrier tunneling heterostructure, the current through which is controlled by either an integrated vertical field-effect transistor or a planar metal-semiconductor field effect transistor. The voltage location and peak-to-valley current ratio of the NDR present in the source-drain circuit can be modulated with gate voltage. Experimental results for four samples are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.