The physical nature of aromaticity is addressed at a high ab initio level. It is conclusively shown that the extrinsic aromatic stabilization energy of benzene E(ease)B, estimated relative to its linear polyene counterpart(s), is very well-reproduced at the Hartree-Fock (HF) level. This is a consequence of the fact that the contributions arising from the zero-point vibrational energy (ZPVE) and electron correlation are rather small. More specifically, they yield together 2.0 kcalmol(-1) to the destabilization of benzene. A careful scrutiny of the HF energies by virial theorem shows further that the kinetic energies of the sigma and pi electrons E(T)HF(sigma) and E(T)HF(pi) are strictly additive in the gauge linear zig-zag polyenes, which also holds for their sum Et(T)HF This finding has the important corollary that E(ease)B is little dependent on the choice of the homodesmic reactions involving zig-zag polyenes. A detailed physical analysis of the sigma- and pi-electron contributions to extrinsic aromaticity requires explicit introduction of the potential energy terms Vne, Vee, and Vnn, which signify Coulomb interactions between the electrons and the nuclei. The Vee term involves repulsive interaction Vee(sigmapi) between the sigma and pi electrons, which cannot be unequivocally resolved into sigma and pi contributions. The same holds for the Vnn energy, which implicitly depends on the electron density distribution via the Born-Oppenheimer (BO) potential energy surface. Several possibilities for partitioning Vee(sigmapi) and Vnn terms into sigma and pi components are examined. It is argued that the stockholder principle is the most realistic, which strongly indicates that E(ease)B is a result of favorable sigma-framework interactions. In contrast, the pi-electron framework prefers the open-chain linear polyenes.
Read full abstract