Abstract

Let Y1,…, Yn be independent identically distributed random variables with distribution function F(x, θ), θ = (θ′1, θ′2), where θi (i = 1, 2) is a vector of pi components, p = p1 + p2 and for ∀θ∈I, an open interval in Rp, F(x, θ) is continuous. In the present paper the author shows that the asymptotic distribution of modified Cramér-Smirnov statistic under Hn: θ1 = θ10 + n−1/2γ, θ2 unspecified, where γ is a given vector independent of n, is the distribution of a sum of weighted noncentral χ12 variables whose weights are eigenvalues of a covariance function of a Gaussian process and noncentrality parameters are Fourier coefficients of the mean function of the Gaussian process. Further, the author exploits the special form of the covariance function by using perturbation theory to obtain the noncentrality parameters and the weights. The technique is applicable to other goodness-of-fit statistics such as U2 [G. S. Watson, Biometrika 48 (1961), 109–114].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.