Knowledge of frictional (shear) resistance and its dependency on slip distance, slip velocity, normal stress, and surface roughness is fundamental information for understanding earthquake physics and the energy released during such events. In view of this, in the present study, plate-impact pressure–shear friction experiments are conducted to investigate the frictional resistance in a rock analog material, i.e. soda-lime glass, under interfacial conditions of relevance to fault rupture. The results of the experiments indicate that a wide range of frictional slip conditions exist at the slip interface ranging from initial no-slip and followed by slip weakening, slip strengthening (healing), and seizure all during a single slip event. The slip-weakening phase is understood to be most likely due to thermal-induced flash heating and incipient melting at asperity junctions, while the slip strengthening (slip-healing) phase is understood to be a result of coalescence and solidification of local melt patches on the slip interface. In addition, plate impact pressure–shear normal-stress change (drop) experiments are employed to probe the response of the slip interface due to sudden alterations in normal stress. In particular, the location (timing) of the stress drop is varied so as to investigate the behavior of the slip interface in its slip-weakening, slip-strengthening (healing) phase, or the seized phase, in response to sudden drop in normal stress. These experimental results provide a rich set of data to better understand the range of possible friction slip states that can be achieved and/or critically examine existing dynamic friction models for fault slip behavior.