Abstract

Virtual reality (VR)-based assembly training has been an interesting topic for the last decades. Generally, there are two shortcomings for nowadays virtual assembly training systems. One is that the operators cannot move around the virtual environment in a natural way as people activity in the real world: they are constrained in a fixed position or can only move in a limited space. The other is that most of the virtual assembly training systems are based on geometry constraint modeling only, which lacks haptics feedback. A new type haptics-based virtual environment system for assembly training of complex products is described in this paper. A new low-cost motion simulator is designed and integrated with the virtual environment to realize free walking by human. An automatic data integration interface is developed to transfer geometry, topology, assembly, and physics information from a computer-aided design system to a VR application, and a hierarchical constraint-based data model is rebuilt to construct the virtual assembly environment. Physics-based modeling and haptics feedback are undertaken to simulate the realistic assembly operations. The application examples and evaluation experiments demonstrate that both motion simulator and haptics have great value for training of assembly processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call