In the present work, cholesterol (Chol)-substituted zinc phthalocyanine (Chol-ZnPc) and its composite with graphene oxide (GO) were prepared for photodynamic therapy (PDT) applications. Briefly, Chol-substituted phthalonitrile (Chol-phthalonitrile) was synthesized first through the substitution of Chol to the phthalonitrile group over the oxygen bridge. Then, Chol-ZnPc was synthesized by a tetramerization reaction of Chol-phthalonitrile with ZnCl2 in a basic medium. Following this, GO was introduced to Chol-ZnPc, and the successful preparation of the samples was verified through FT-IR, UV-Vis, 1H-NMR, MALDI-TOF MS, SEM, and elemental analysis. Regarding PDT properties, we report that Chol-ZnPc exhibited a singlet oxygen quantum yield (Φ∆) of 0.54, which is slightly lower than unsubstituted ZnPc. Upon introduction of GO, the GO/Chol-ZnPc composite exhibited a higher Φ∆, about 0.78, than that of unsubstituted ZnPc. Moreover, this enhancement was realized with a simultaneous improvement in fluorescence quantum yield (ΦF) to 0.36. In addition, DPPH results suggest low antioxidant activity in the composite despite the presence of GO. Overall, GO/Chol-ZnPc might provide combined benefits for PDT, particularly in terms of image guidance and singlet oxygen generation.