Angle-resolved photoemission spectroscopy with sub-micrometer spatial resolution (μ-ARPES), has become a powerful tool for studying quantum materials. To achieve sub-micrometer or even nanometer-scale spatial resolution, it is important to focus the incident light beam (usually from synchrotron radiation) using x-ray optics, such as the zone plate or ellipsoidal capillary mirrors. Recently, we developed a laser-based μ-ARPES with spin-resolution (LMS-ARPES). The 177nm laser beam is achieved by frequency-doubling a 355nm beam using a KBBF crystal and subsequently focused using an optical lens with a focal length of about 16mm. By characterizing the focused spot size using different methods and performing spatial-scanning photoemission measurement, we confirm the sub-micron spatial resolution of the system. Compared with the μ-ARPES facilities based on the synchrotron radiation, our LMS-ARPES system is not only more economical and convenient, but also with higher photon flux (>5 × 1013 photons/s), thus enabling the high-resolution and high-statistics measurements. Moreover, the system is equipped with a two-dimensional spin detector based on exchange scattering at a surface-passivated iron film grown on a W(100) substrate. We investigate the spin structure of the prototype topological insulator Bi2Se3 and reveal a high spin-polarization rate, confirming its spin-momentum locking property. This lab-based LMS-ARPES will be a powerful research tool for studying the local fine electronic structures of different condensed matter systems, including topological quantum materials, mesoscopic materials and structures, and phase-separated materials.