Abstract

The upsurge of low-dimensional Dion–Jacobson (DJ) phase perovskites has brought significant interest in view of their appealing stability against harsh environmental conditions as well as their promising performance in optoelectronic applications. Few reports to date have concentrated on the fundamental relationship of fine-tuning the control of diamine-based perovskite single crystals toward their electronic properties and optical behaviors. Here, we demonstrate that cationic control is proposed to regulate the role of hydrogen bonding of organic ligands with the edge-sharing [CuCl6]4– octahedral layers, leading to strong differences in the material excitonic profile and tunability of their electronic properties. Interestingly, we observe a significant reduction of photoluminescence intensity upon controlling the Cu2+/Cu+ proportion in this hybrid system. According to the photoemission measurements, variation in the oxidation states of Cu cations plays a crucial role in stabilizing the diammonium-based perovskite geometric structure. Interestingly, we find that the electronic signatures of the singlet spin-state and high-energy region transition are not influenced by the thermal effect, as probed by temperature-dependent X-ray absorption spectroscopy (XAS) at elevated temperature. Density functional calculations suggest that such an electronic difference originates from the hydrogen bonding reduction that altered the magnitude of the octahedral distortion within the DJ layered structure. As a result, the 3+NHC4H9NH3+ conformation produces a non-negligible interaction toward tuning the optical and electronic properties of DJ copper-based perovskites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call