To improve the photocatalytic activity of BiOF under simulated sunlight irradiation, a ternary Bi-based Z-scheme heterojunction of Bi/BiOF/Bi2O2CO3 nanosheets were prepared using one-pot hydrothermal technique, where N, N-dimethylformamide was used as carbon source for Bi2O2CO3 and reductant for metal Bi, bismuth nitrate was employed as Bi source and NaF was used as F source. The photocatalytic activity of Bi/BiOF/Bi2O2CO3 was improved greatly towards ciprofloxacin degradation with the reaction kinetic constant of 0.0649 min−1, which was 7 and 3.5 times to that of BiOF and Bi2O2CO3, respectively. The improved photocatalytic activity was ascribed to the surface plasmon resonance effect of metal Bi and the synergistic effects of BiOF/Bi2O2CO3 Z-scheme heterojunction, which facilitated the migration of the photogenerated electron and inhibited the recombination of photogenerated e−/h+ pairs. The degradation mechanism and charge transfer pathway were confirmed. This work expands the application of BiOF-based photoactive materials in environmental field.