Antigenic variation of the immunodominant MgpB and MgpC proteins has been suggested to be a mechanism of immune evasion of the human pathogen Mycoplasma genitalium, a cause of several reproductive tract disease syndromes. Phase variation resulting in the loss of adherence has also been documented, but the molecular mechanisms underlying this process and its role in pathogenesis are still poorly understood. In this study, we isolated and characterized 40 spontaneous, nonadherent phase variants from in vitro-passaged M. genitalium cultures. In all cases, nonadherence was associated with the loss of MgpBC protein expression, attributable to sequence changes in the mgpBC expression site. Phase variants were grouped into seven classes on the basis of the nature of the mutation. Consistent with the established role of RecA in phase variation, 31 (79.5%) variants arose via recombination with MgPa repeat regions that contain mgpBC variable sequences. The remaining mutants arose via nonsense or frameshift mutations. As expected, revertants were obtained for phase variants that were predicted to be reversible but not for those that arose via an irreversible mechanism. Furthermore, phase variants were enriched in M. genitalium cultures exposed to antibodies reacting to the extracellular, conserved C terminus of MgpB but not in cultures exposed to antibodies reacting to an intracellular domain of MgpB or the cytoplasmic HU protein. Genetic characterization of the antibody-selected phase variants confirmed that they arose via reversible and irreversible recombination and point mutations within mgpBC These phase variants resisted antibody-mediated growth inhibition, suggesting that phase variation promotes immune evasion.
Read full abstract