Abstract
The R and M phase variants of Rhodobacter sphaeroides and Rhodobacter capsulatus were isolated. The growth rates in the dark and in the light in glucose-containing media were much higher for the Rba. sphaeroides R variant than for the M variant. For the Rba. capsulatus R and M variants, growth rates in the dark and in the light in fructose- or glucose-containing media differed insignificantly. The cells of Rba. sphaeroides and Rba. capsulatus phase variants growing in media with glucose and fructose exhibited differences in activity of the key enzymes of the Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways. The oxidative pentose phosphate pathway (PPP) does not participate in glucose and fructose metabolism in the studied bacteria. Specific activity of the ED pathway enzymes was higher in dark-grown R and M variants of both Rba. sphaeroides and Rba. capsulatus than in the cells grown under light. Specific activity of the EMP enzymes was higher for the R and M variants of both cultures grown in the light than for those grown in the dark. Activities of the 2-keto-3-deoxy-6-phosphogluconate and fructose bisphosphate aldolases, the key enzymes of the ED and EMP pathways in Rba. sphaeroides M variant grown in the medium with glucose in the light or in the dark, were approximately twice those of the R variant. In the medium with fructose activities of these enzymes in both R and M variants did not change significantly depending on growth conditions. Activities of the enzymes of the EMP and ED pathways in the extracts of the Rba. capsulatus R and M cells grown with glucose or fructose did not change significantly. Cultivation of Rba. sphaeroides and Rba. capsulatus phase variants in the medium with fructose resulted in a considerably increased synthesis of 1-phosphofructokinase. Induction of 1-phosphofructokinase synthesis in Rba. sphaeroides occurred only in the light, while in Rba. capsulatus induction of this enzyme in the medium with fructose was observed both in the dark and in the light. Thus, under aerobic conditions in the dark the phase variants of both bacteria probably assimilated glucose and fructose via the ED pathway, while in the light the EMP pathway was active.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.