Abstract

An experimental investigation of the scratch and abrasive wear behaviour of a lean C–Mn construction steel in its tempered fully martensitic (TM) state is presented. The scratch resistance and the corresponding failure mechanisms as a function of the tempering temperature (200–500°C) were evaluated using a multi-pass dual-indenter (MPDI) scratch test applying different loading conditions. Results show that the scratch resistance depends not only on the tempering temperature, but also on the load applied during scratching. The optimal tempering temperature depends on the applied load. For both low and high loading conditions, the dual phase (ferrite–martensite) variant with an optimised martensite volume fraction and morphology yields an even better combination of scratch/abrasion resistance and hardness. The scratch resistance at different loading conditions is linked to the strength coefficient K in the Hollomon equation (σ=Kεn). The scratch behaviour in the MPDI scratch test at a low load correlates quite well with the standard ASTM G65 multi-particle abrasion test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.