Petroleum refinery sludge, an egregious solid residue generated from the wastewater treatment plants poses an environmental hazard owing to its intricate hydrocarbon composition, necessitating competent treatment for secure disposal. The study proposes a green solution through anaerobic co-digestion of nitrogen-rich petroleum refinery sludge (PS) with carbon-rich yard waste (YW), balancing the nutrients and moisture content for efficient microbial proliferation. Using Central Composite Design-Response Surface Methodology, 1 L batch experiments were conducted with varying carbon/nitrogen (C/N) ratios and pH to achieve maximum biogas yield within 50 days of co-digestion. However, the sluggish biogas recovery (40%) indicated a slow rate-limiting hydrolysis, necessitating pretreatment. Feedstock incubation with Bacillus subtilis IH1 strain, isolated from the microbially-enriched PS, at 108 colony forming units (CFU) per mL for 5 days maximized the soluble chemical oxygen demand and volatile fatty acids by 2.2 and 1.4 folds respectively compared to untreated feedstock. Scale-up Bacillus subtilis aided co-digestion studies further augmented biogas by 76% against untreated monodigestion of PS with significant total petroleum hydrocarbons, emulsions, and lignocellulosic degradation. Further identification of major organic pollutants in the batch digestate revealed significant degradation of the toxic organic hydrocarbon pollutants apotheosizing the efficacy of the synergistic sustainable technique for the management of PS. Environmental implicationThe effluent treatment plants (ETPs) of petroleum refining industries generate sludge which is a complex mixture of petroleum hydrocarbons, oil–water (O/W) emulsions and heavy metals. These petroleum hydrocarbon constituents can be linear/cyclic alkanes, polyaromatics, resins and asphaltenes, whose intricate composition is reportedly carcinogenic, cytogenic and mutagenic, classifying it as hazardous waste. Biological treatment of these sludge through anaerobic digestion leads to utilization of petroleum hydrocarbons with subsequent energy recovery. Co-digestion of these sludge with competent co-substrates leads to nutrient balance, diverse microbial proliferation and toxicant dilution. Microbially aided co-digestion further augments methane rendering a digestate with utmost pollutant degradation.
Read full abstract