Abstract

Sustainable treatment of petroleum oil sludge still remains as a major challenge to petroleum refineries. Bioremediation is the promising technology involving bacteria for simultaneous production of biosurfactant and followed by degradation of petroleum compounds. Complete genomic knowledge on such potential microbes could accentuate its successful exploitation. The present study discusses the genomic characteristics of novel biosurfactant producing petrophilic/ petroleum hydrocarbon degrading strain, Enterobacter xiangfangensis STP-3, isolated from petroleum refinery oil sludge contaminated soil. The genome has 4,584,462 bp and 4372 protein coding sequences. Functional analysis using the RAST and KEGG databases revealed the presence of biosynthetic gene clusters linked to glycolipid and lipopeptide production and multiple key candidate genes linked with the degradation pathway of petroleum hydrocarbons. Orthology study revealed diversity in gene clusters associated to membrane transport, carbohydrate, amino acid metabolism, virulence and defence mechanisms, and nucleoside and nucleotide synthesis. The comparative analysis with 27 other genomes predicted that the core genome contributes to its inherent bioremediation potential, whereas the accessory genome influences its environmental adaptability in unconventional environmental conditions. Further, experimental results showed that E. xiangfangensis STP-3 was able to degrade PHCs by 82 % in 14 days during the bioremediation of real time petroleum oil sludge with the concomitant production of biosurfactant and metabolic enzymes, To the best of our knowledge, no comprehensive genomic study has been previously reported on the biotechnological prospective of this species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.