Stochastic resonance is a counterintuitive phenomenon amplifying the weak periodic signal by application of external noise. We demonstrate the enhancement of a weak periodic signal by stochastic resonance in a trapped-ion oscillator when the oscillator is excited to the nonlinear regime and subject to an appropriate noise. Under the full control of the radio-frequency drive voltage, this amplification originates from the nonlinearity due to asymmetry of the trapping potential, which can be described by a forced Duffing oscillator model. Our scheme and results provide an interesting possibility to make use of controllable nonlinearity in the trapped ion, and pave the way toward a practical atomic sensor for sensitively detecting weak periodic signals from real noisy environment.