Abstract

Stochastic resonance is a counterintuitive phenomenon amplifying the weak periodic signal by application of external noise. We demonstrate the enhancement of a weak periodic signal by stochastic resonance in a trapped-ion oscillator when the oscillator is excited to the nonlinear regime and subject to an appropriate noise. Under the full control of the radio-frequency drive voltage, this amplification originates from the nonlinearity due to asymmetry of the trapping potential, which can be described by a forced Duffing oscillator model. Our scheme and results provide an interesting possibility to make use of controllable nonlinearity in the trapped ion, and pave the way toward a practical atomic sensor for sensitively detecting weak periodic signals from real noisy environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.