Alcohol consumption has been identified as a causal factor promoting changes in different molecular and cellular mechanisms resulting in neurodegeneration. This process is specific to certain brain regions and its effects on different areas of the brain can result in a variety of deleterious consequences. The prefrontal cortex (PFC) appears to be particularly sensitive to alcohol-induced neurodegeneration; this region is quite complex, as it is responsible for high order mental processes such as decision making. Thus, it is important to have precise and unbiased data of neuronal morphology parameters to understand the real effects of alcohol on the PFC. This study aimed to investigate alcohol-induced neurodegeneration in the PFC by utilizing behavioral and stereological methods. In the first phase of the study, we utilized eighteen animals, six controls and twelve alcohol-treated, that were submitted to voluntary chronic alcohol ingestion for four or eight weeks. Their brains were analyzed by design-based stereology methods to assess number and volume parameters regarding neuronal integrity in regions of the PFC (prelimbic - PL, infralimbic - IL and anterior cingulate - ACC). In the second phase of the study, six animals were utilized as controls and eight animals were submitted to the same alcohol ingestion protocol and to a behavioral decision-making test. In conclusion, our findings indicate that chronic alcohol consumption promotes a decrease in volume in the prelimbic and in the anterior cingulate, a decrease of mean neuronal volume in the anterior cingulate cortex and a decrease of total volume of neurons in the IL area. We did not observe changes in decision-making behavior in either of the two periods of alcohol intake. This shows that morphological changes occur in specific regions of the prefrontal cortex, a noble area of cognitive functions, induced by chronic alcohol consumption.
Read full abstract