The high frequency and noise performance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T_{\mathrm {MIN}}$ </tex-math></inline-formula> , NF <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MIN</sub> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> , and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Z_{\mathrm {sopt}}$ </tex-math></inline-formula> ) of SiGe heterojunction bipolar transistors (HBTs) are characterized for the first time from dc and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> -parameter measurements up to 70 GHz and from 2 to 400 K. Significantly improved current gain ~10 000, minimum noise temperature, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T_{\mathrm {MIN}}$ </tex-math></inline-formula> (< 1 K below 8.5 GHz), MAG, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f_{T}$ </tex-math></inline-formula> (458 GHz), and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f_{\mathrm {MAX}}$ </tex-math></inline-formula> (534 GHz) are observed at 2 K compared to 300 K, with no evidence of impurity deionization. It is found that the optimum noise figure current density, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$J_{\mathrm {OPT}}$ </tex-math></inline-formula> , increases with temperature, following the crossover between shot noise and thermal noise. In contrast, the peak- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f_{T}$ </tex-math></inline-formula> and peak- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f_{\mathrm {MAX}}$ </tex-math></inline-formula> current densities increase by more than 50% at 2 K, likely due to the higher <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$v_{\mathrm {sat}}$ </tex-math></inline-formula> . A decrease in BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CEO</sub> , expected due to the higher current gain, and negative output conductance are observed in the 2–200 K range in the dc output characteristics at large currents above the peak- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$f_{T}$ </tex-math></inline-formula> current.
Read full abstract