During shield tunnel construction, waste mud is a significant source of urban construction waste. However, the disposal of waste mud has always been a challenge in engineering. Addressing the challenge of harmlessly disposing of, or repurposing, mud cakes formed after pressure filtration of shield mud remains a pressing issue for many cities. To address the challenge of shield mud disposal and explore the utilization technology of this resource, this study focuses on shield mud obtained from the Shenzhen subway tunnel. Calcined shield mud powder (CSMP) was prepared by activating its potential pozzolanic properties through a calcination process. Compressive strength tests revealed that, while CSMP exhibits some pozzolanic activity, its performance is limited. When 30% of the cement is replaced, the mortar’s maximum strength activity index (SAI) is only 82.6%, which makes it unsuitable as a supplementary cementitious material for concrete applications. At the same time, CSMP was also evaluated as a partial replacement for fly ash in the formulation of synchronous grouting materials, with performance metrics including fluidity, bleeding rate, hardening rate, setting time, and compressive strength systematically tested. The experimental results showed that, while CSMP reduces the fluidity of grouting, it significantly improves volumetric stability, shortens setting time, and enhances mechanical performance. Compared to the fly ash used in the study, CSMP exhibited better pozzolanic reactivity, promoting the formation of C-S-H and C-A-S-H phases, optimizing the pore structure, and increasing the density and overall performance of the grouting material. When the substitution rate is below 60%, the performance of grouting meets standard requirements, indicating the strong feasibility of utilizing CSMP to replace fly ash in synchronous grouting materials.
Read full abstract