In this research work, the experimental tests were conducted on a single-cylinder, constant speed, variable compression ratio (VCR) engine fuelled with green diesel. Initially, bio-oil was extracted from waste Trichosanthes cucumerina fruit seeds using the Soxhlet apparatus. The acquired bio-oil is used to make green diesel through the trans-esterification process. The fuel blends were prepared with different proportions of Trichosanthes cucumerina biodiesel (TCB) in diesel fuel (30%, 50%, and 70%) for the experimental test, and their thermo-physical properties were evaluated according to ASTM standards. At full load condition, the TCB30 blend with CR 18:1 gives closer engine performance of brake thermal efficiency (33.52%), brake specific fuel consumption (0.27kg/kWh), and exhaust gas temperature (389.56°C) and reduced emission levels of unburned hydrocarbon by 13.51%, carbon monoxide by 10.82%, smoke opacity by 16.87%, and the penalty of nitric oxide by 17.56% equated with neat diesel fuel. The engine performance and emission parameters are predicted using multiple regression artificial neural network (ANN) models. A database generated from the experimental results is used to train the ANN model. The average correlation coefficient (R) of the trained ANN model is 0.99673, which is closer to 1. It indicates that the proposed ANN model can generate the exact correlation between input factors and output responses. As a result, the application of ANN is a better forecasting tool for predicting VCR engine performance and emission characteristics.
Read full abstract