This work looks into how well Cu-doped zinc oxide works as a photocatalyst when exposed to visible light to break down sulphanilamide. The synthesized samples were characterized by XRD and then FTIR techniques for structural besides compositional analysis. The approximate value of bandgap found out by NBE values of PL spectra showed a decrease in bandgap with doping. Deconvoluted PL spectra revealed the presence of radiative recombination pathways associated with zinc interstitial and zinc vacancy in addition to band-to-band recombination in all samples. FESEM images showed a nanoflake shape for pure ZnO, while Cu-ZnO had a pseudo-spherical shape. SQUID-VSM was adopted to understand the magnetic nature of freshly prepared, heated, and unheated aged samples. Ferromagnetic behavior was observed with saturation magnetization of 5.56×10–4, 2.88×10–4, and 2.78×10–4 emu/g for freshly prepared, heated, and unheated aged samples, respectively. A 2% Cu-doped sample exhibited the highest efficiency of 92.3% towards the degradation of sulphanilamide. Since we got better efficiency for 2% Cu-ZnO, we should further decrease the doping percentage and check whether we will get even higher efficiency in the future. The photocatalytic degradation efficiency of ternary ZnO compounds, codoped ZnO, should be evaluated, yet another future scope.
Read full abstract