In this paper, a numerical approximation method is developed to find approximate solutions to a class of constrained multi-objective optimization problems. All the functions of the problem are not necessarily convex functions. At each iteration of the method, a particular type of subproblem is solved using the trust region technique, and the step is evaluated using the notions of actual reduction and predicted reduction. A non-differentiable l ∞ penalty function restricts the constraint violations. An adaptive BFGS update formula is introduced. Global convergence of the proposed algorithm is established under the Mangasarian-Fromovitz constraint qualification and some mild assumptions. Furthermore, it is justified that the proposed algorithm displays a super-linear convergence rate. Numerical results are provided to show the efficiency of the algorithm in the quality of the approximated Pareto front.
Read full abstract