Abstract
In this paper, a numerical approximation method is developed to find approximate solutions to a class of constrained multi-objective optimization problems. All the functions of the problem are not necessarily convex functions. At each iteration of the method, a particular type of subproblem is solved using the trust region technique, and the step is evaluated using the notions of actual reduction and predicted reduction. A non-differentiable l ∞ penalty function restricts the constraint violations. An adaptive BFGS update formula is introduced. Global convergence of the proposed algorithm is established under the Mangasarian-Fromovitz constraint qualification and some mild assumptions. Furthermore, it is justified that the proposed algorithm displays a super-linear convergence rate. Numerical results are provided to show the efficiency of the algorithm in the quality of the approximated Pareto front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.