Abstract

We propose an algorithm for nonlinear optimization that employs both trust region techniques and line searches. Unlike traditional trust region methods, our algorithm does not resolve the subproblem if the trial step results in an increase in the objective function, but instead performs a backtracking line search from the failed point. Backtracking can be done along a straight line or along a curved path. We show that the new algorithm preserves the strong convergence properties of trust region methods. Numerical results are also presented.Keywordstrust region methodsbacktrackingunconstrained optimizationnonlinear optimization

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.