Abstract
An effective methodology is proposed to evaluate the boundary stiffnesses of beams with generally restrained edges. The boundary conditions at the ends of the beams are implemented by the penalty method. The unified Jacobi polynomials are introduced to represent the assumed mode shape functions of the beam. Hamilton’s principle with the assumed mode method is employed to derive the equation of motion of the beam with generally restrained boundaries. Subsequently, a novel approach is proposed to evaluate the boundary stiffnesses of the beam using the measured natural frequencies of the beam by vibration experiments. The accuracy of this method is verified by comparing the results with the previously published literature, the finite element method (FEM), and the vibration experiments. The effects of the types and values of the boundary spring stiffnesses on the vibration properties of the beam are also discussed. The calculation method in this research can provide an effective prediction technique for the boundary stiffnesses of engineering structures with generally restrained edges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.