The European lobster (Homarus gammarus) forms the base of an important fishery along the coasts of Europe. However, stocks have been in decline for many years, prompting new regulations in the fishery and also restocking efforts. An important feature of any restocking effort is the assessment of success in the number of released juveniles that stay and become adult over time. Here, we tested the power of a single nucleotide polymorphism (SNP) DNA marker panel developed for population assignment to correctly infer parentage on the maternal side of lobster larvae, in the absence of known fathers, using lobsters included in a current restocking effort on the Swedish west coast. We also examined the power to reconstruct the unknown paternal genotypes, and examined the number of fathers for each larval clutch. We found that the 96-SNP panel, despite only containing 78 informative markers, allowed us to assign all larvae to the correct mother. Furthermore, with ten genotyped larvae or more, confident paternal genotypes could be reconstructed. We also found that 15 out of 17 clutches were full siblings, whereas two clutches had two fathers. To our knowledge, this is the first time a SNP panel of this size has been used to assess parentage in a crustacean restocking effort. Our conclusion is that the panel works well, and that it could be an important tool for the assessment of restocking success of H. gammarus in the future.
Read full abstract